LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2023

PCH 2503 - MOLECULAR SPECTROSCOPY

Date: 02-05-2023	Dept. No.	Max.: 100 Marks
Time: 01:00 PM - 04:00 PM		

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Which of the following will have greater rotational constant, I³⁵Cl or I³⁷Cl? Justify your answer.
- 2. State the rule of mutual exclusion principle and cite examples.
- 3. The complex, [Cr(CO)₆] shows MLCT band and not LMCT band in electronic spectrum. Why?
- 4. Write Fieser-Kuhn rule applied for calculating absorption maximum in conjugated polyenes.
- 5. What is the most characteristic feature in the mass spectrum of the compounds containing one chlorine atom?
- 6. Distinguish between first and second order proton NMR spectra.
- 7. Predict the number of lines in 19 F and 1 H NMR for the compound HF $_2$ ⁻.
- 8. NaCl molecule does not show NQR transitions in spite of the nuclear spin value (I = 3/2) for chlorine atom Justify.
- 9. Define asymmetry parameter.
- 10. What is the significance of isomer shift?

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Using Morse's curve, explain the vibrational transitions in anharmonic oscillator and derive the expressions for $\Delta \varepsilon$ of fundamental band, first and second overtones.
- 12. The microwave spectrum of H¹²⁷I consists of a series of equally spaced lines separated by 12.8 cm⁻¹. Calculate the moment of inertia and inter nuclear distance of H¹²⁷I.
- 13. Explain the Classical theory of Raman Effect.Mention its limitations.
- 14. Discuss the effect of polar solvents on the electronic transitions of carbonyl compounds.
- 15. Account for the intensity distribution in absorption bands based on Franck-Condon principle.
- 16. Illustrate double McLafferty rearrangement with an example.
- 17. What is virtual coupling? Mention the conditions required to observe virtual coupling.
- 18. Explain diamagnetic anisotropy with an example.
- 19. How is the EPR of a complex used to classify the symmetry of a complex into cubic or rhombohedral type?
- 20. Distinguish between isotropic and anisotropic hyperfine splitting with relevant examples.
- 21. Mention the importance of quadrupole coupling constant in NQR spectroscopy.
- 22. Explain the principle of Mossbauer spectroscopy with an example.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. Explain the appearance of P and R branches in the spectrum of a diatomic vibrating rotor. (6+4)
 - b. Discuss the various factors influencing vibrational frequencies in IR spectroscopy.
- 24a. Compound (A) has the formula $C_{11}H_{16}O$ and it is reduced to B, $C_{11}H_{18}O$ with hydrogen in presence of palladium. The ultraviolet spectrum of A showed strong absorption with λ_{max} at 255 nm and this absorption was absent in the ultraviolet spectrum of B. What is the structure of A? The structure of B is

- b. Write a detailed account on the various types of bands observed in the electronic spectrum of organic compounds with examples. (6+4)
- 25a. Predict the structure of an organic compound with molecular formula C₅H₁₀O, which gives peaks having m/e values at 86, 71, 58 and 43 (100%) in its mass spectrum.
 - b. Explain fast atom bombardment technique for the generation of ions in the source of mass spectrometer. (5+5)
- 26. Discuss the principle of 2D NMR technique and explain the COSY and DEPT spectrum of Methyl cyclopropyl ketone.
- 27. Explain the following i) first derivative pattern of EPR lines.

 ii) the EPR of high spin Mn²⁺ complex. (5+5)
- 28a. Mention the conditions to observe NQR transitions in a compound.
 - b. Discuss the Mossbauer spectral features of the complexes $K_4[Fe(CN)_6]$ and $K_4[Fe(CN)_5(NH_3)]$.

(4+6)

\$\$\$\$\$\$\$